quotient sheaf - Definition. Was ist quotient sheaf
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist quotient sheaf - definition

COLLECTION OF OBJECTS ASSOCIATED TO SUBSETS OF A SPACE IN A MANNER ADMITTING GLUING AND RESTRICTION
Presheaf; Sheaf space; Etale space; Étale space; Sheaf theory; Global section functor; Espace étalé; Section of a sheaf; Morphism of sheaves; Pre-sheaf; Espace etale; Presheaf (mathematics); Section (sheaf theory); Sheaf of abelian groups; Étalé space; Presheaves; Global sections functor; Skyscraper sheaf; Sheaf Theory; Monopresheaf; Separated presheaf; Global section; Complex of sheaves; Sheaf of sets; Quotient sheaf; Draft:Sheaf of sets; Space of sections; Sheaf hom

Sheaf (mathematics)         
In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set.
Quotient space (linear algebra)         
VECTOR SPACE CONSISTING OF AFFINE SUBSETS
Linear quotient space; Quotient vector space
In linear algebra, the quotient of a vector space V by a subspace N is a vector space obtained by "collapsing" N to zero. The space obtained is called a quotient space and is denoted V/N (read "V mod N" or "V by N").
Ideal quotient         
BINARY OPERATION DEFINED ON THE SET OF IDEALS IN A COMMUTATIVE RING; (I:J) CONSISTS OF ELEMENTS R OF THE COMMUTATIVE RING SUCH THAT RJ IS A SUBSET OF I; IN ALGEBRAIC GEOMETRY, CORRESPONDS TO THE SET DIFFERENCE OF SUBVARIETIES
Quotient ideal; Colon ideal
In abstract algebra, if I and J are ideals of a commutative ring R, their ideal quotient (I : J) is the set

Wikipedia

Sheaf (mathematics)

In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts).

The field of mathematics that studies sheaves is called sheaf theory.

Sheaves are understood conceptually as general and abstract objects. Their correct definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets.

There are also maps (or morphisms) from one sheaf to another; sheaves (of a specific type, such as sheaves of abelian groups) with their morphisms on a fixed topological space form a category. On the other hand, to each continuous map there is associated both a direct image functor, taking sheaves and their morphisms on the domain to sheaves and morphisms on the codomain, and an inverse image functor operating in the opposite direction. These functors, and certain variants of them, are essential parts of sheaf theory.

Due to their general nature and versatility, sheaves have several applications in topology and especially in algebraic and differential geometry. First, geometric structures such as that of a differentiable manifold or a scheme can be expressed in terms of a sheaf of rings on the space. In such contexts, several geometric constructions such as vector bundles or divisors are naturally specified in terms of sheaves. Second, sheaves provide the framework for a very general cohomology theory, which encompasses also the "usual" topological cohomology theories such as singular cohomology. Especially in algebraic geometry and the theory of complex manifolds, sheaf cohomology provides a powerful link between topological and geometric properties of spaces. Sheaves also provide the basis for the theory of D-modules, which provide applications to the theory of differential equations. In addition, generalisations of sheaves to more general settings than topological spaces, such as Grothendieck topology, have provided applications to mathematical logic and to number theory.